

BLP BauLand Projektentwicklung GmbH Herrn Michael Faßbender Brohltalstraße 10

Vi/ 03.04.2020 18-137BE1

56656 Brohl-Lützing

vorab per E-Mail: fassbender@bauland-projektentwicklung.de

Bassenheim, NBG "Karmelenbergweg II" 18-137 Baugrunderkundung, geo- und umwelttechnische Beratung zum Straßen- und Kanalbau

1 Vorgang

Bassenheim, NBG "Karmelenbergweg II", Baugrunderkun-Projekt:

dung, geo- und umwelttechnische Beratung zum Straßen- und

Kanalbau

Bauherr/Auftraggeber: Fassbender Weber Ingenieure PartGmbB, Brohl-Lützing

Auftrag vom: 13.02.2020

2 Grundlagen

Unterlagen

Für die Projektbearbeitung wurden folgende Planunterlagen verwendet:

[U1] Ortsgemeinde Bassenheim, Entwässerungsplanung, Entwurfsplanung, Lageplan, M = 1 : 500, Plan-Nr. 2.0a, Stand: August 2019

aufgestellt: Fassbender Weber Ingenieure PartGmbB, Brohl-Lützing

[U2] Ortsgemeinde Bassenheim, Erschließung Baugebiet "Karmelenbergweg II", Straßenplanung, Entwurfsplanung,

Lageplan, M = 1 : 500, Plan-Nr. 2.0a, Stand: August 2019

Geschäftsführer: Horst Immig Christiane Viehmann

Pastor-Klein-Straße 17 56073 Koblenz E-Mail: info@ivgeo.de Fon: 0261/9 52 69-0 Internet: www.ivgeo.de Fax: 0261/9 52 69-20

Hauptsitz:

Niederlassung: Brückenstraße 4 56814 Ernst b. Cochem Fon: 02671/6 05 69-29

Fax: 02671/6 05 69-30

Regelquerschnitte, M = 1 : 25, Plan-Nr. 3.1, Stand: August 2019 aufgestellt: Fassbender Weber Ingenieure PartGmbB, Brohl-Lützing

[U3] Städtebaulicher Entwurf Karmelenbergweg II, Bassenheim, Variante 2, M = 1 : 1.000, Stand: 04.08.2017aufgestellt: Fassbender Weber Ingenieure PartGmbB, Brohl-Lützing

[U4] Aufmass Bericht vom 27.02.2020 aufgestellt: Fassbender Weber Ingenieure PartGmbB, Brohl-Lützing

• Baufläche und geplante Baumaßnahme

Die Untersuchungsfläche befindet sich im Südosten von Bassenheim (→ Übersichtskarte, Abb. 1). Die Erschließung erfolgt sowohl über die Mayener Straße als auch den Karmelenbergweg. Derzeit wird die Untersuchungsfläche landwirtschaftlich genutzt.

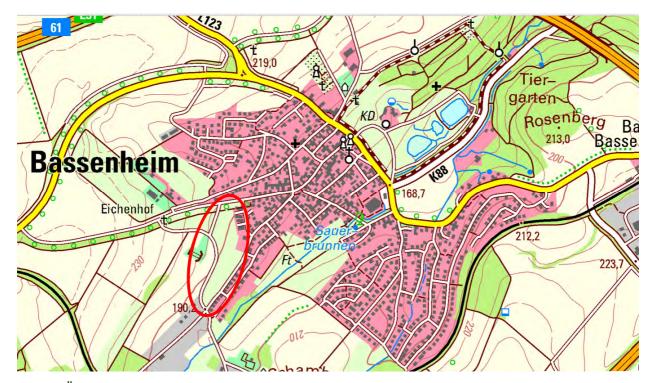


Abb. 1: Übersichtskarte (Datengrundlage entnommen aus LANIS)

Folgende standortbedingten Daten sind zu nennen:

• Trinkwasser- und Heilquellenschutzgebiet¹⁾: außerhalb

• Erdbebenzone (DIN EN 1998-1/NA:2011): 1

• OK Gelände: ~190,4 bis ~208,0 müNN

Straßen-/Trassenlänge: ca. 380 m
 geplante Lage der Kanäle: Neuanlage

• geplante Rohrmaterialien: RW: Stahlbeton (SB), DN300

SW: Kunststoff (PP), DA250

geplante Tiefenlage Rohrsohle:
 RW: t ≈ 2,0 – 2,4 m u GOK

SW: $t \approx 2.3 - 3.0 \text{ m u GOK}$

geplanter Straßenaufbau:
 Belastungsklasse Bk 0,3, Asphaltbau-

weise

• geplante Gradiente: bergseitig ± geländegleich

talseitig geringe Dammlage

Der Verlauf der Straßen- und Kanaltrasse ist in Anlage 1 dargestellt. Die geplante Kanalbaumaßnahme ist der geotechnischen Kategorie 2 (GK 2) zuzuordnen.

3 Untersuchungen

• Felduntersuchungen (27.02.2020)

- 6 Bohrsondierungen (BS1 BS6) nach DIN EN ISO 22475-1, t = 4,0 m
- 4 mittelschwere Rammsondierungen (DPM1 DPM4) nach DIN EN ISO 22476-2,
 t = 4,0 m
- 1 Kernbohrung (AP1), t = 18 cm
- 1 "in-situ"-Versickerungsversuch in Bohrsondierung BS6 (→ Anlage 6)
- Einmessung nach Lage und Höhe → [U4]

¹⁾ Onlineabfrage des digitalen Wasserbuchs des Ministeriums für Umwelt, Landwirtschaft, Ernährung, Weinbau und Forsten Rheinland-Pfalz

Feldversuche

Die in den Aufschlüssen angetroffenen Böden wurden vor Ort bodenmechanisch nach DIN EN ISO 14688-1 bzw. DIN 4022 angesprochen (→ Baugrundprofile, Anlage 2).

• bodenmechanische Laborversuche (→ Anlagenreihe 3)

- 18 gestörte Proben
- 3 Wassergehaltsbestimmungen (DIN 18121)
- 3 Kornverteilungsanalysen (DIN 18123)

chemische Untersuchungen (→ Anlagenreihen 4 und 5)

- Erstellung von 2 Mischproben (→ Tabelle 1)
- BS4/KB1 (Schwarzdecke): PAK**)
- DPM1/KB1 (Schwarzdecke): PAK
- AP1/KB2 (Schwarzdecke): PAK
- AP1/KB3 (Schwarzdecke): PAK

Tabelle 1: Zusammenstellung der Bodenmischproben

Schicht		Misch- Einzelproben		Boden-	Untersuchungs-
Nr.	Bezeichnung	probe		art	umfang
2	± verlehmte, vulkanische Böden	MP1	BS1/GP1, BS2/GP1, BS3/GP1, BS4/GP2 + 3, BS5/GP1, BS6/GP1 + 2	Sand	Tab II.1.2-2 und II.1.2-3 LAGA TR Boden ²⁾
3	quartäre Lehme	MP2	BS1/GP2, BS2/GP2 + 3, BS3/GP2 + 3, BS5/GP2, BS6/GP3	Schluff	Tab II.1.2-2 und II.1.2-3 LAGA TR Boden

Hinweis:

• Wir gehen in der weiteren Beratung davon aus, dass die Auffüllungen innerhalb der Baumaßnahme verwertet werden, so dass auf eine chemische Untersuchung verzichtet wurde.

^{**)} PAK = polycyclische aromatische Kohlenwasserstoffe

²⁾ Länderarbeitsgemeinschaft Abfall (LAGA), Anforderungen an die stoffliche Verwertung von mineralischen Abfällen: Teil II: Technische Regeln für die Verwertung von Bodenmaterial (TR Boden), Stand: 05.11.2004 Boden

4 Baugrund und Bodenkenngrößen

4.1 Überblick

Folgende Schichtung wurde unter dem Oberboden bzw. der Oberflächenbefestigung festgestellt:

Schicht 1: Auffüllungen

• Schicht 2: ± verlehmte vulkanische Böden

• Schicht 3: quartäre Lehme (Löss, Lösslehm, Hanglehm)

Schicht 4: Bachkies

4.2 Schichtbeschreibungen und Bodenkenngrößen

Oberflächenbefestigung

In der Mayener Straße sowie dem parallel verlaufenden Geh-/Radweg und im Karmelenbergweg besteht die Oberflächenbefestigung aus Schwarzdecke. Die Schwarzdecken können zumeist in eine Deck- und Tragschicht gegliedert werden. Die erkundeten Aufbauten des gebundenen Straßenoberbaus sind in Tabelle 2 dargestellt.

Tabelle 2: Schichtaufbau und -mächtigkeiten des gebundenen Straßenoberbaus

Bez.	,	Schichtmä	chtigkeit [cr	organoleptischer	
	gesamt	DS	TS Schotter		Eindruck
BS4	10	2	8		unauffällig
DPM1	8				keine Schichtung erkennbar, unauffällig
AP1	18	3 + 3	9	3	2 Deckschichten, TS + Schotter: Teergeruch

DS = Deckschicht TS = Tragschicht

• Auffüllungen (Schicht 1)

Lediglich in der Bohrsondierung BS4 wurde im Straßenbereich unter der Oberflächenbefestigung zunächst eine **Auffüllung (Schicht 1)** in einer Schichtmächtigkeit von d ≈ 0.5 m direkt erkundet.

Hierbei handelt es sich um den ungebundenen Straßenoberbau aus Lavaschlacke (= Schaumlava). Bodenmechanisch ist die Auffüllung als schwach schluffiger, stark sandiger Kies zu bezeichnen. Die Färbung ist rotbraun. Organoleptische Auffälligkeiten wurden nicht festgestellt.

Folgende Klassifizierungen und charakteristische Kenngrößen werden für die Auffüllungen (Schicht 1) abgeschätzt:

Bodengruppen nach DIN 18196: [GU] Frostempfindlichkeit nach ZTVE: F2

 $\label{eq:parameters} Wichte des feuchten Bodens: \qquad \gamma_k = 18 \text{ kN/m}^3$ innerer Reibungswinkel: $\phi'_k = 32,5 - 35^\circ$ Kohäsion: $c'_k = 0 \text{ kN/m}^2$

Steifemodul: k.A.

Besonderheiten: anthropogen

• ± verlehmte vulkanische Böden (Schicht 2)

In allen Bohrsondierungen wurden unter Gelände bzw. der Auffüllung \pm verlehmte vulkanische Böden in Schichtmächtigkeiten von d ≈ 0.5 - ≥ 3.4 m erkundet. In der Bohrsondierung BS4 wurden die vulkanischen Böden nicht durchteuft. Die bodenmechanische Zusammensetzung der vulkanischen Böden variiert überwiegend von einem schluffigen, schwach kiesigen Sand bis zu einem schwach schluffigen, stark sandigen Kies. Lokal überwiegt das Schluffkorn. Die Färbung variiert von beige, braun bis graubraun. Die vulkanischen Böden sind locker bis mitteldicht, schichtweise auch sehr locker gelagert.

Folgende Klassifizierungen und charakteristische Kenngrößen werden für die vulkanischen Böden (Schicht 2) abgeschätzt:

Bodengruppe nach DIN 18196: SU, GU, SU*, lokal UL

Frostempfindlichkeit nach ZTVE: F2: SU, GU

F3: SU*, UL

Wichte des feuchten Bodens: $\gamma_k = 17 - 19 \text{ kN/m}^3$

innerer Reibungswinkel: $\phi'_k = 27.5 - 32.5^\circ$

Kohäsion: $c'_k \approx 0 - 2 \text{ kN/m}^2$

Steifemodul: $E_{s,k} = 10 - 20 \text{ MN/m}^2$

 $E_{s,k} = 6 - 8 MN/m^2 (UL)$

Besonderheiten: tuff-, bims- und/oder britzhaltig

• quartäre Lehme (Schicht 3)

Zur Tiefe folgen bis zu den Erkundungsendtiefen überwiegend quartäre Lehme in Form von Lösslehm und Löss, untergeordnet Hanglehm. Die bodenmechanische Zusammensetzung variiert von einem tonigen, schwach sandigen Schluff bis zu einem Schluffsand. Die Färbung ist überwiegend braun, untergeordnet dunkelbraun, grau oder rot. Die Konsistenz ist überwiegend weich bis steif, teils halbfest.

Folgende Klassifizierungen und charakteristische Kenngrößen werden für die quartären Lehme (Schicht 3) abgeschätzt:

Bodengruppe nach DIN 18196: UL, TL, SU*

Frostempfindlichkeit nach ZTVE: F3

Wichte des feuchten Bodens: $\gamma_k = 20 \text{ kN/m}^3$ innerer Reibungswinkel: $\phi'_k = 27.5^\circ$

Kohäsion: $c'_k \approx 0 - 5 \text{ kN/m}^2$

Steifemodul: E_{s,k} = 4 - 6 MN/m² (≥ weiche Zustandsform)

 $E_{s,k} = 8 - 12 \text{ MN/m}^2 (\geq \text{steife Zustandsform})$

Besonderheiten: Löss: kalkhaltig

• Bachkies (Schicht 4)

Lediglich in der Bohrsondierung BS1 wurde der Übergang zum Bachkies in einer Tiefe von $t\approx 2,9$ m u GOK erkundet. Die Schichtmächtigkeit beträgt $d\approx 0,5$ m. Bodenmechanisch ist der Bachkies als schluffiger, sandiger Kies in brauner Färbung zu bezeichnen. Der Bachkies ist locker bis mitteldicht gelagert.

Folgende Klassifizierungen und charakteristische Bodenkenngrößen werden für den Bachkies (Schicht 4) abgeschätzt:

Bodengruppe nach DIN 18196: GU*

Frostempfindlichkeit nach ZTVE: F3

Wichte des feuchten Bodens: $\gamma_k = 21 \text{ kN/m}^3$ innerer Reibungswinkel: $\phi_k^* = 30 - 32.5^\circ$

Kohäsion: $c_k^{\prime} \approx 0 - 2.5 \text{ kN/m}^2$ Steifemodul: $E_{s,k} = 40 - 60 \text{ MN/m}^2$

Besonderheiten: ---

4.3 Homogenbereiche – VOB 2016

Allgemeines

Auf der Grundlage der VOB 2019 werden nachfolgend die Homogebereiche für Erdarbeiten (DIN 18300)***) und Bohrarbeiten (DIN 18301) angegeben. Die Abschätzung der Homogenbereiche bezieht sich auf die bodenmechanischen Eigenschaften unter Vernachlässigung der abfalltechnischen Randbedingungen. Die Angaben beruhen zumeist auf abgeschätzten Erfahrungswerten.

• Homogenbereich 1 = Lockerböden

Bodenarten (DIN EN ISO 14688-1): ± schluffiger Ton

bis

± steinige, schwach blockige Kiese

→ siehe Abb. 2

Massenanteil Steine: $\leq 30 \%$ Massenanteil Blöcke: $\leq 15 \%$

Bodengruppen (DIN 18196): UL, TL, TM, SU, SU*, SW, SI, SE, GW, GE, GI, GU, GU*

Wassergehalt: 5 - 70 %

Organische Anteile: < 5 % (Oberzone ≤ 15 %)

Wichte des feuchten Bodens: $\gamma_k = 17 - 22 \text{ kN/m}^3$

undränierte Kohäsion: $c_u \approx 10 - 100 \text{ kN/m}^2 \text{ (bindige Anteile)}$

^{***)} gültig für Lösen, Laden, Transportieren und Einbau von Böden - gilt nicht für die Verdichtungsfähigkeit

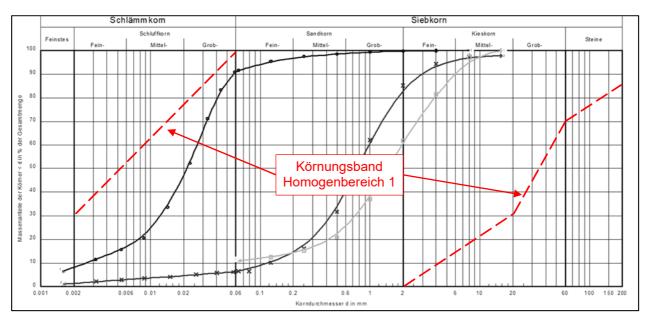


Abb. 2: Körnungsband Homogenbereich 1

Konsistenzzahl: $0.5 \le I_C \sim 1.25$ (bindige Anteile)

Plastizitätszahl: k.A. (leicht bis mittel plastisch)

bezogene Lagerungsdichte: 15 % $< I_D \le 100$ %

Abrasivität: kaum abrasiv bis abrasiv

Besonderheiten: Oberzone: lokal Auffüllungen, lokal durchwurzelt

5 Grund- und Schichtwasser

In der Baugrunderkundung wurde weder Grund- noch Schichtwasser festgestellt. Aufgrund der topografischen und geologischen Randbedingungen ist im Untergrund mit einzelnen Schicht- und Stauwasserhorizonten, insbesondere im Übergang von durchlässigen zu weniger durchlässigen Schichten zu rechnen.

6 Abfalltechnische Einstufung

6.1 Schwarzdecke

Die Bewertung der Untersuchungsergebnisse basiert auf den Vorgaben des Leitfadens des Landesbetriebs Straßen und Verkehr (LSV, jetzt Landesbetrieb Mobilität) Rheinland-Pfalz für die Behandlung von Ausbauasphalt und Straßenaufbruch mit teer-/pechtypischen Bestandteilen, Stand 08/2008.

Tabelle 3: Untersuchungsergebnisse Schwarzdecke

nicht nachweisbar

Probe Tiefe	BS4/KB1 0 - 10 cm	DPM1/KB1 0 - 8 cm	AP1/KB2 3 - 15 cm	AP1/KB3 15 - 18 cm	Zuordnungswert	Einheit				
PAK	n.n.	n.n.	4,3	n.n.	30	mg/kg				
Beurteilung										
	Messwert ≤ 3	0 mg/kg	Ausbaua	Ausbauasphalt						
	Messwert > 3	0 mg/kg	pechtypischen Substa	anzen						

In den Proben BS4/KB1, DPM1/KB1, AP1/KB2 und AP1/KB3 wird der Zuordnungswert von 30 mg/kg eingehalten. Demzufolge ist die Schwarzdecke als "Ausbauasphalt" zu bezeichnen und in Verwertungsklasse A einzustufen. In der Regel ist Ausbauasphalt der Wiederverwertung im Heißmischverfahren zu zuführen. Alternativ ist die Verwertung in Tragschichten mit hydraulischen Bindemitteln oder in Asphaltfundationsschichten im Heißeinbau möglich.

6.2 Aushubböden

Im Zuge der geplanten Kanalbaumaßnahme fallen bei offener Bauweise überwiegend die vulkanischen Böden (Schicht 2) und quartären Lehme (Schicht 3) als Aushubmaterialien an. Die Bewertung der Untersuchungsergebnisse erfolgt hinsichtlich der Wiederverwertung in einem technischen Bauwerk und basiert für Böden auf den Zuordnungswerten der LAGA, TR Boden (Stand: Nov. 2004). In Abhängigkeit der festgestellten Schadstoffgehalte wird der zu verwertende Aushub einer Einbauklasse zugeordnet.

Tabelle 4: Untersuchungsergebnisse Bodenaushub (Bewertung nach LAGA TR Boden)

Probe	MP1	MP2	Во	denähnl. An	IW.				
Schicht	2	3	Z 0 Z 0		Z 0* ^{A)}	Z 1	Z 2	Einheit	
Bodenart	Sand	Schluff	Sand	Schluff					
Feststoff									
Cyanide, ges.	< 0,5	< 0,5				3	10	mg/kg	
TOC	0,4	< 0,1	0,5 (1,0) ^{C)}	0,5 (1,0) ^{C)}	0,5 (1,0) ^{C)}	1,5	5	Masse-%	
EOX	< 1,0	< 1,0	1	1	1 ^{D)}	3 ^{D)}	10	mg/kg	
KW _{C10} – C22	< 40	< 40	100	100	200	300	1.000	mg/kg	
KW-Index	< 40	< 40	100	100	400	600	2.000	mg/kg	
Σ BTEX	n.n.	n.n.	1	1	1	1	1	mg/kg	
Σ LHKW	n.n.	n.n.	1	1	1	1	1	mg/kg	
∑ PAK _{EPA 1-16}	n.n.	n.n.	3	3	3	3 (9) ^{E)}	30	mg/kg	
B(a)p	< 0,05	< 0,05	0,3	0,3	0,6	0,9	3	mg/kg	
PCB ₆	n.n.	n.n.	0,05	0,05	0,1	0,15	0,5	mg/kg	
Arsen	5,9	9,4	10	15	15 (20) ^{B)}	45	150	mg/kg	
Blei	50	15	40	70	140	210	700	mg/kg	
Cadmium	< 0,2	< 0,2	0,4	1	1 (1,5) ^{B)}	3	10	mg/kg	
Chrom ges.	15	32	30	60	120	180	600	mg/kg	
Kupfer	9	17	20	40	80	120	400	mg/kg	
Nickel	22	33	15	50	100	150	500	mg/kg	
Quecksilber	< 0,07	< 0,07	0,1	0,5	1,0	1,5	5	mg/kg	
Thallium	0,2	< 0,2	0,4	0,7	0,7 (1,0) ^{B)}	2,1	7	mg/kg	
Zink	92	55	60	150	300	450	1.500	mg/kg	
Probe	MP1	MP2	Bodenäh			nn. Bauwe		Einheit	
			Z 0 /	Z 0*	Z 1.1 Z 1.2 Z 2				
Eluat									
pH-Wert	7,6	8,7	6,5 -	- 9,5	6,5 - 9,5	6 – 12	5,5 – 12		
Leitfähigkeit	95	95	25	50	250	1.500	2.000	μS/cm	
Chlorid	2,4	4,7	3	0	30	50	100 ^{F)}	mg/l	
Sulfat	1,3	1,3	2	0	20	50	200	mg/l	
Cyanide ges.	< 0,005	< 0,005	0,0	05	0,005	0,01	0,02	mg/l	
Phenole	< 0,01	< 0,01	0,0	02	0,02	0,04	0,1	mg/l	
Arsen	0,002	0,004	0,0	14	0,014	0,02	0,06 ^{G)}	mg/l	
Blei	< 0,001	< 0,001	0,0	04	0,04	0,08	0,2	mg/l	
Cadmium	< 0,0003	< 0,0003	0,0015		0,0015	0,003	0,006	mg/l	
Chrom (ges.)	< 0,001	< 0,001	0,0125		0,0125	0,025	0,06	mg/l	
Kupfer	< 0,005	< 0,005	0,0		0,02	0,06	0,1	mg/l	
Nickel	< 0,001	< 0,001	0,0		0,015	0,02	0,07	mg/l	
Quecksilber	< 0,0002	< 0,0002	< 0,0		< 0,0005	0,001	0,002	mg/l	
Zink	< 0,01	< 0,01	0,	15	0,15	0,2	0,6	mg/l	
Thallium	< 0,0002	< 0,0002			- Florida			mg/l	

Bewertung Feststoffwerte	Bewertung Eluatwerte				
Messwert ≤ Z 0		Messwert ≤ Z 0 / Z 0*			
Z 0 < Messwert ≤ Z 0*		$Z 0 / Z 0* < Messwert \le Z 1.1$			
Z 0* < Messwert ≤ Z 1		Z 1.1 < Messwert ≤ Z 1.2			
Z 1 < Messwert ≤ Z 2		Z 1 < Messwert ≤ Z 2			
Messwert > Z 2		Messwert > Z 2			

A) maximale Feststoffgehalte für die Verfüllung von Abgrabungen unter Einhaltung bestimmter Randbedingungen (siehe "Ausnahmen von der Regel" für die Verfüllung von Abgrabungen in TR Boden, Nr. II.1.2.3.2)

Der Wert gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der in

Klammern angegebene Wert.

^{C)} Bei einem C: N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%.

D) Bei Überschreitungen ist die Ursache zu prüfen.

E) Bodenmaterial mit Zuordnungswerten > 3 mg/kg und ≤ 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden.

- F) Bei natürlichen Böden in Ausnahmefällen bis 300 mg/l.
- G) Bei natürlichen Böden in Ausnahmefällen bis 0,12 mg/l. n.n. nicht nachweisbar

Hinweise:

- Die LAGA TR Boden gilt nur für die Verwertung außerhalb der durchwurzelbaren Bodenschicht in einem technischen Bauwerk. Zur Herstellung einer natürlichen Bodenfunktion sind die Zuordnungswerte Z 0 bzw. Z 0* einzuhalten. Die Zuordnungswerte Z 1.1, Z 1.2 und Z 2 stellen die Obergrenze der jeweiligen Einbauklasse bei der Verwertung von Bodenmaterial zur Herstellung einer technischen Funktion dar. Die für die jeweiligen Einbauklassen geltenden Einschränkungen gem. LAGA sind zu berücksichtigen.
- Bei einer bodenähnlichen Verwertung gelten das Bundes-Bodenschutz-Gesetz (BBodSchG) und die dazu gehörige Verordnung (BBodSchV). In diesem Fall sind die Vorsorgewerte für die jeweiligen Böden einzuhalten.
- In Abhängigkeit des geplanten Entsorgungsweges (Umfang der Deklarationsanalytik in Abhängigkeit der Entsorgungsstelle) sind die vorliegenden chemischen Untersuchungen ggf. durch fehlende Parameter zu ergänzen.
- Sofern im Bauablauf festgestellt wird, dass in den Auffüllungen der Bauschuttanteil 10 % übersteigt, ist eine Neubewertung der Untersuchungsergebnisse erforderlich.

• ± verlehmte vulkanische Böden (Schicht 2)

In der Probe MP1 werden die Zuordnungswerte Z 0 für Blei, Nickel und Zink im Feststoff überschritten. Die ± verlehmten vulkanischen Böden sind daher der **LAGA-Einbauklasse Z 0*** zuzuordnen. Nach LAGA TR Boden dürfen die vulkanischen Böden für die Verfüllung von Abgrabungen verwertet werden, wenn die in LAGA TR Boden, Teil II, Kap. 1.2.3.2 genannten Bedingungen eingehalten sind. Die vulkanischen Böden sind nach Abfallverzeichnisverordnung (AVV)³⁾ als "Boden und Steine mit Ausnahme derjenigen, die unter 17 05 03* fallen" (Abfallschlüssel 17 05 04) zu verwerten.

3) Verordnung über das Europäische Abfallverzeichnis (Abfallverzeichnis-Verordnung – AVV), Stand: 10.12.2001

18-137BE1 vom 03.04.2020

• quartäre Lehme (Schicht 3)

In der Probe MP2 werden die Zuordnungswerte Z 0 eingehalten. Die quartären Lehme sind daher der **LAGA-Einbauklasse Z 0** zuzuordnen und können aus umwelttechnischer Sicht uneingeschränkt verwendet werden. Die quartären Lehme sind nach Abfallverzeichnisverordnung (AVV) als "Boden und Steine mit Ausnahme derjenigen, die unter 17 05 03* fallen" (Abfallschlüssel 17 05 04) zu verwerten.

7 Beurteilung der allgemeinen Versickerungsfähigkeit

Die Durchlässigkeit des Baugrundes wurde durch einen "in-situ"-Versickerungsversuch (Absinkversuch) in der Bohrsondierung BS6 mit fallender Druckhöhe (instationäre Verhältnisse) bis in eine Tiefe von t≈ 4,0 m überprüft. Der Ausbau des o.g. temporären Pegels erfolgte durch 3 m Vollrohre und 1 m Filterrohr. Ergänzend wurden die Kornverteilungsanalysen (→ Anlage 3.2) ausgewertet.

Für den Absinkversuch wurde der o.g. temporären Pegel nach dem Einbau der Verrohrung zunächst mit Wasser gefüllt, so dass sich im Pegel ein Wasseraufstau einstellte. Während des Versickerungsversuchs wurde die Absenkung des Wasserspiegels in Abhängigkeit der Zeit gemessen. Anhand der gemessenen Daten während des Versickerungsversuchs erfolgte die Auswertung nach USBR-Formel zur Ermittlung der Durchlässigkeitsbeiwerte k_f (→ Anlage 6). Der durchgeführte Versickerungsversuch dient einer Abschätzung der Durchlässigkeit des Untergrundes. Bei den ermittelten Untergrunddurchlässigkeiten handelt es sich um einen gemittelten Wert aus horizontaler und vertikaler Durchlässigkeit.

Für die \pm verlehmten vulkanischen Böden (Schicht 2) kann die Durchlässigkeit überschlägig mit $\mathbf{k}_{\mathrm{f}} \sim 1 \times 10^{-6}$ bis 1×10^{-7} m/s mit abnehmender Tendenz abgeschätzt werden. Die \pm verlehmten vulkanischen Böden sind somit nach DIN 18130 als "durchlässig" bis "schwach durchlässig" einzustufen.

Nach ATV-DVGW Regelwerk A138 zur Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser liegt die entwässerungstechnisch relevante Durchlässigkeit im Bereich

von $k_f \approx 1 \text{ x } 10^{-3} \text{ m/s}$ bis $k_f \approx 1 \text{ x } 10^{-6} \text{ m/s}$. Die \pm verlehmten vulkanischen Böden sind daher in Abhängigkeit des Feinkornanteils für eine Versickerung **bedingt geeignet**.

- 8 Geotechnische Beurteilung
- 8.1 Straßenbau (geplantes Baugebiet)
- 8.1.1 Allgemeines

Nach [U2] erfolgt die geotechnische Beratung zum Straßenbau in der Belastungsklasse Bk 0,3 in Asphaltbauweise gemäß RStO 12 Tafel 3, Zeile 1 (→ Prüfung Objektplaner). Nach Angaben des Objektplaners kommt die geplante Gradiente bergseitig ± geländegleich und talseitig in geringer Dammlage zu liegen. Unter Berücksichtigung einer gesamtfrostsicheren Aufbaustärke von d ≈ 55 cm liegt das Erdplanum sowohl in den vulkanischen Böden als auch geringfügig über dem derzeitigen Gelände (geplante Dammlage).

8.1.2 ± geländegleiche Gradiente

In den \pm verlehmten vulkanischen Böden (Schicht 2) wird der nach ZTV E-StB 17 geforderte Verformungsmodul von $E_{v2} \ge 45 \text{ MN/m}^2$ erfahrungsgemäß nicht erreicht, so dass besondere geotechnische Maßnahmen zur Erhöhung der Tragfähigkeit des Erdplanums, z.B. in Form eines zusätzlichen Bodenaustauschs erforderlich werden.

Bei der geplanten Asphaltbauweise ist gem. RStO 12 in der Belastungsklasse Bk 0,3 auf OK Frostschutzschicht eine Tragfähigkeit von $E_{v2} \geq 100$ MN/m² erforderlich. Zur sicheren Einhaltung dieser Mindestforderungen ist ein zusätzlicher **Bodenaustausch** von d ≈ 20 - 30 cm unter dem standardisierten Oberbau der RStO 12 erforderlich. Sofern in Höhe des Rohplanums bindige Böden in weicher Zustandsform angetroffen werden, ist zusätzlich zur Stabilisierung eine Lage Grobschotter (Krotzenlage, Körnung 60/120 mm) statisch einzudrücken und die Schichtmächtigkeit des Bodenaustausch um d ≈ 10 - 20 cm zu erhöhen.

Alternativ kann das Planum durch Zugabe von Bindemitteln (qualifizierte Bodenverbesserung) verbessert werden. Für diese qualifizierte Bodenverbesserung sind vorzugsweise Kalk-Zement-Mischbinder zu verwenden. Bindemittelart und -menge sind dabei im Vorfeld der Baumaßnahme in einer labortechnischen Eignungsprüfung festzulegen (Bearbeitungsdauer ca. 4 - 6 Wochen).

8.1.3 geringe Dammlage

Für die Dammaufstandsfläche ist der Oberboden flächig abzuschieben. Sofern in den darunter liegenden Böden durchwurzelte Bereiche angetroffen werden, sind diese ebenfalls zu entfernen. Generell ist bei geneigtem Gelände in der Dammaufstandsfläche eine stufenförmige Verzahnung gem. ZTV E-StB 17 mit dem anstehenden Untergrund vorzunehmen ($\Delta h \ge 30$ cm).

Sofern die Dammaufstandsfläche in den bindigen Böden in \leq weicher Zustandsform zu liegen kommt, ist bei Dammhöhen von h \leq 1,0 m zur Erhöhung der Tragfähigkeit ein Bodenaustausch in einer Stärke von d = 30 cm vorzusehen. Darüber hinaus ist das Rohplanum zunächst mit einer Lage Grobschotter (Krotzenlage, Körnung 60/120 mm) durch statisches Eindrücken zu stabilisieren. Die mineralischen Erdbaustoffe (\Rightarrow Materialspezifikation und Tragfähigkeiten gem. Kap 8.1.4) sind lagenweise einzubauen und nachweislich auf $D_{Pr} \geq 98$ % bzw. im oberen Bereich (= Planum bis 1,0 m Tiefe) auf $D_{Pr} \geq 100$ % zu verdichten.

Alternativ kann das Planum durch Zugabe von Bindemitteln (qualifizierte Bodenverbesserung) verbessert werden (\Rightarrow Kap. 8.1.2). Im Anschluss hieran ist die Dammschüttung lageweise mit bindemittelvergütetem Aushubmaterial oder Fremdmaterial gem. Kap 8.1.4 herzustellen. Das Material ist auf der Grundlage der Ergebnisse eines Probebaus lagenweise einzubauen und mit dynamischer Verdichtung auf mind. $D_{Pr} \ge 97$ % bei einem Luftporengehalt von $n_a \le 12$ % zu verdichten.

Die Dammböschungen sind lagenweise nach den Kriterien der Dammbauweise aufzubauen und unter Beachtung der in Kap. 8.1.4 genannten Materialspezifikationen und Tragfähigkeiten mit maximal 1:1,5 zu böschen. Die gesamte Böschung ist mit Oberboden anzudecken und als Erosionsschutz rasch zu begrünen. Am Böschungsfuß ist eine Entwässerungsmulde mit gesicherter Vorflut anzulegen.

8.1.4 Erdbaustoffe und Tragfähigkeiten

Für die **Frostschutzschicht** sind folgende Materialspezifikationen und Tragfähigkeiten einzuhalten:

- feinteilfreie, kornabgestufte mineralische Erdbaustoffe
- z.B. Kiessand- oder Mineralgemische, Lavaschlacke, Basaltlava, etc., Körnung 0/32 mm bis 0/63 mm
- Bodengruppen nach DIN 18196: GW, GI
- Verdichtung: D_{Pr} ≥ 100 %

Für den darunter liegenden **Bodenaustausch und Straßendamm** können v.g. Materialien, alternativ kleinstückiger Felsschutt (= witterungsbeständige Hartsteinmaterialien) im Körnungsbereich 0/32 bis max. 0/100 mm eingesetzt werden. Zulässig sind nach DIN 18196 die Bodengruppen GW und GI. Die Bodengruppe GU ist ebenfalls zulässig, wobei der Feinteilgehalt im Hinblick auf ein günstiges Einbau- und Verdichtungsverhalten auf max. 10 % zu beschränken ist.

Es gelten die Materialanforderungen der ZTV T-StB95/02, ZTV SoB-StB04/07, TL SoB-StB04/07 und TL Gestein-StB04/18. Die mineralischen Erdbaustoffe sind lagenweise einzubauen und zu verdichten. Die Verwendung von **Recyclingbaustoffen** ist im Einzelfall bodenmechanisch und umwelttechnisch zu prüfen.

Die mineralischen Erdbaustoffe sind lagenweise einzubauen und nachweislich auf die o.g. Verdichtungsanforderungen zu verdichten. In Anlehnung an Belastungsklasse Bk 0,3 sind bei mineralischem Oberbau auf der Oberkante der jeweiligen Schicht folgende **Mindesttragfähigkeiten und Verdichtungsverhältnisse** einzuhalten:

	Schicht	Tragfähigkeit	Verdichtungsverhältnis		
•	Frostschutzschicht:	$E_{v2} \geq 100~MN/m^2$	$E_{v2}/E_{v1} \leq 2,3$		
•	Bodenaustausch/Dammschüttung:	$E_{v2} \geq 70~MN/m^2$	$E_{v2}/E_{v1} \le 2,5$		

Zur Entwässerung des Erdplanums ist bergseitig eine Längsdrainage (Teilsickerrohr) nach DIN 4095 mit dauerhaft gesicherter Vorflut zu verlegen.

Das Bauverfahren ist zu Beginn der Bauarbeiten unter Einsatz der für die Verwendung vorgesehenen Erdbaustoffe in einem **Probebau** zu überprüfen. Der Bodenaustausch kann dann in Abhängigkeit der eingesetzten Erdbaustoffe und festgestellten Tragfähigkeiten angepasst werden.

8.2 Kanalbau

Der geotechnischen Beratung zum Kanalbau werden Regeltiefen von $t \le 3,0$ m unter derzeitiger GOK zugrunde gelegt. Die Kanalsohle kommt somit sowohl in den \pm verlehmten vulkanischen Böden (Schicht 2) als auch den quartären Lehmen (Schicht 3) zu liegen.

Zur Vergleichmäßigung der Tragfähigkeit in Höhe der Rohrsohle ist gem. DIN EN 1610:2015 der Bettungstyp 1 auszuführen. Die untere Bettungsschicht muss dabei eine Mindeststärke von a ≥ 10 cm aufweisen.

Sofern die Kanalsohle in bindigen Böden mit < steifer Zustandsform zu liegen kommt, ist unter dem Rohrauflager ein zusätzlicher **Bodenaustausch** von d ≥ 20 cm erforderlich und die Aushubsohle mit einer Lage Lavakrotzen (60/120 mm) zu stabilisieren. Für den v.g. Bodenaustausch sind nicht bindige, kornabgestufte Erdbaustoffe (Lavaschlacke, Mineralgemisch, Kiessand) der Körnung 0/32 mm geeignet. Zulässig sind die Bodengruppen GW und GI.

Die **Abdeckung** ist nach DIN EN 1610:2015 mind. 15 cm über den Rohrscheitel bzw. 10 cm über die Rohrverbindungen zu führen. Wir empfehlen die Rohrscheitel in einer Stärke von d=30 cm zu überdecken. Für die **Leitungszone** (untere Bettungsschicht bis einschl. Abdeckung) sind feinteil- und steinfreie, kornabgestufte Fremdmaterialien (z.B. Lavaschlacke, Mineralgemische, Kiessand der Körnung 0/16 mm bis max. 0/32 mm) zu verwenden. Die Materialien sind lagenweise einzubauen und nachweislich gem. den Vorgaben der statischen Berechnung, mind. jedoch auf $D_{Pr} \ge 98$ % zu verdichten.

Für die **Hauptverfüllung** sind Fremdmaterialien in Form von nicht oder nur schwach bindigen, verdichtungsfähigen Mineralgemischen, Lavaschlacke oder Kiessande zu verwenden (Körnung 0/32 mm bis max. 0/63 mm, Bodengruppen GW und GU, GU nur wenn Massenanteil

 $\varnothing_{0,063\,\text{mm}} \le 10$ %). Die Materialien sind lagenweise einzubauen und nachweislich auf $D_{Pr} \ge 98$ %, ab 0,5 m unter Erdplanum auf $D_{Pr} \ge 100$ % zu verdichten.

Aus umwelttechnischer Sicht ist die Verwertung der vulkanischen Böden (Schicht 2) und quartären Lehme (Schicht 3) grundsätzlich möglich. Die vulkanischen Böden können aus bodenmechanischer Sicht als Hauptverfüllung dann verwertet werden, wenn der Feinkornanteil auf $\emptyset_{0,063\,\text{mm}} \leq 10\,\%$ begrenzt ist (Bodengruppe SW, SU). Bei höherem Feinkorngehalt ist für die Bodengruppe SU* im Rahmen einer Aufbereitung grobkörniges Stützkorn homogen einzumischen, so dass der v.g. max. Feinkornanteil eingehalten ist. Die quartären Lehme sind bodenmechanisch nur nach Aufbereitung (z.B. Zugabe von Bindemitteln) verwertbar.

Für die Planung und Ausführung wird i.E. auf die DIN EN 1610:2015 verwiesen. Die Rohre sind in einer statischen Berechnung nachzuweisen (Bodenkenngrößen nach Kap. 4.2, Schichtgrenzen gem. Anlage 2).

Zur Gewährleistung ausreichender Tragfähigkeit für die darüber liegende Straße ist auf OK Grabenverfüllung (= Erdplanum, \geq 60 cm unter OK-Straße) im Plattendruckversuch eine Tragfähigkeit von $E_{v2} \geq 70$ MN/m² bei einem Verdichtungsverhältnis von $E_{v2}/E_{v1} \leq 2,5$ nachzuweisen. Mit den o.g. Erdbaustoffen für die Hauptverfüllung ist die Einhaltung dieses Tragfähigkeitskriteriums bei fachgerechter Ausführung i.d.R. einhaltbar.

Unter Berücksichtigung der Kurzzeitstandfestigkeit der angetroffenen Schichten ist der Kanalgraben bis zu einer planmäßigen Grabentiefe von $t \le 3,0$ m mit Verbauplatten bzw. Verbautafeln im Absenkverfahren zu sichern.

9 Hinweise zur Bauausführung

Der Oberboden ist flächig abzuschieben und fachgerecht zu lagern.

Die in der Baufläche anstehenden bindigen Böden sind witterungs- und frostempfindlich. Sie neigen bei geringem Wasserzutritt zum irreversiblen Festigkeitsverlust. Dies ist bei der Organisation des Bauablaufs zu berücksichtigen. Der Aushub im Bereich der Grabensohle bzw. Planum ist nur

mit einem Glattschneidelöffel zulässig. Alle nicht-bindigen und gemischtkörnigen Aushubsohlen sind nachzuverdichten. Unmittelbar nach Aushub ist das Erdplanum durch Überbauen mit Bodenaustausch bzw. der unteren Bettungsschicht zu schützen. Auftretende Schicht- und Stauwässer sowie Niederschlagswasser sind mittels offener Wasserhaltung (Längsdränagen, Pumpensümpfe) mit gesicherter Vorflut abzuleiten. Tagwasserzuflüsse von angrenzenden Flächen sind durch geeignete Maßnahmen zu verhindern.

Beim Rückbau der Verbauten muss gewährleistet sein, dass die Baugruben- bzw. Kanalgrabenverfüllung dicht an den vorhandenen Boden anschließt und keine aufgelockerten Bereiche bzw. Hohlräume im Baugrund verbleiben.

Die Verdichtung der Kanalgrabenverfüllung ist mittels Densitometerversuchen ggf. in Verbindung mit Rammsondierungen zu überprüfen. Für dieses indirekte Verfahren ist eine Kalibrierung mit direkten Prüfmethoden erforderlich. Im Vorfeld der Baumaßnahme sind die Erdbaustoffe durch Siebanalysen zu klassifizieren und das Verdichtungsverhalten der Böden im Proctorversuch zu bestimmen. Die Tragfähigkeit der Hauptverfüllung ist mittels Plattendruckversuchen zu überprüfen.

10 Schlussbemerkung

Der vorliegende umwelttechnische Bericht beschreibt die durch die Bodenaufschlüsse festgestellten Untergrundverhältnisse in abfalltechnischer Hinsicht. Die festgestellten Schadstoffbelastungen sind als orientierende Einstufung zu betrachten, wobei es sich um das Resultat von punktuellen Beprobungen handelt. Innerhalb von Auffüllungen können die Schadstoffgehalte variieren. Sofern bei den Erdarbeiten andere Untergrundverhältnisse oder organoleptische Auffälligkeiten angetroffen werden, ist unser Ingenieurbüro für Geo- + Umwelttechnik umgehend zu benachrichtigen.

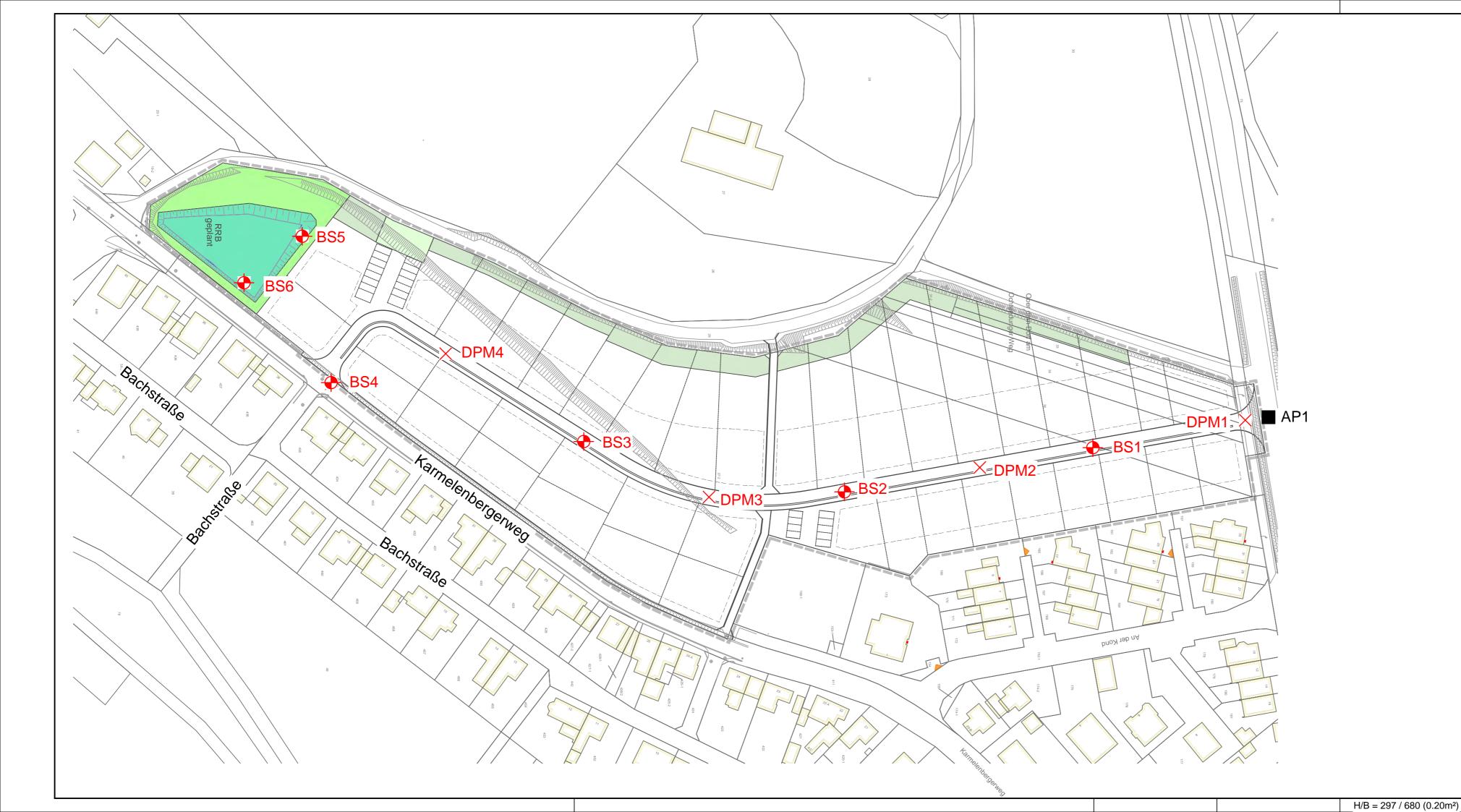
o.M.

o.M.

Der Bericht umfasst insgesamt 20 Seiten zzgl. der nachstehend genannten Anlagen. Der Bericht bezieht sich auf die in Kap. 1 beschriebene Aufgabenstellung und ist nur in seiner Gesamtheit gültig. Eine auszugsweise Weitergabe oder Vervielfältigung ist nicht zulässig.

aufgestellt:

Verteiler:


5

6

BLP BauLand Projektentwicklung GmbH, Brohl-Lützing 2 x

Ergebnisse der chemischen Untersuchungen

Ergebnis des Versickerungsversuchs

Lageplan
Maßstab = 1 : 1000

-ω-Z-

ZEICHENERKLÄRUNG (siehe DIN 4023)

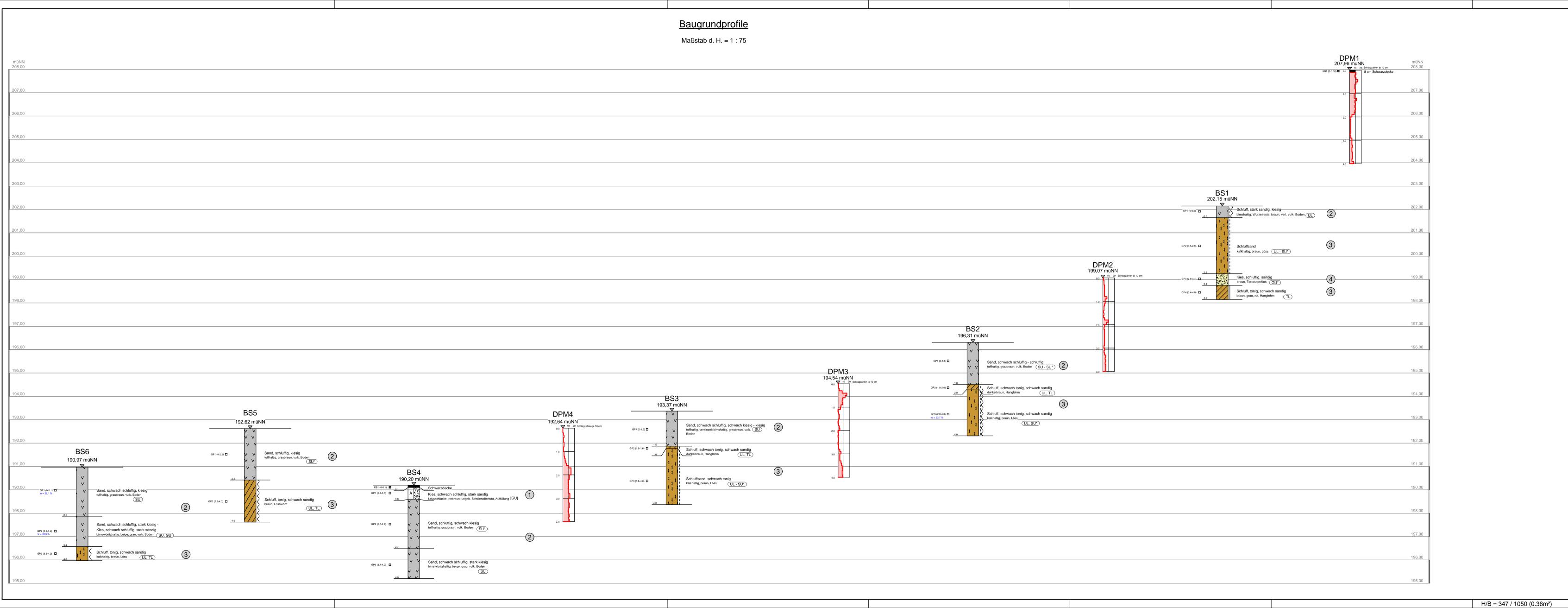
UNTERSUCHUNGSSTELLEN

BS Bohrsondierung ø40-100mm

X DPM Rammsondierung mittelschwere Sonde nach DIN EN ISO 22476-2:2012

AP Schwarzdecke

Plangrundlagen entnommen aus [U1]


Projekt Nr. : 18-137

Bearbeiter : Viehmann	Gezeichnet : Dg	immig · viehmann
Teilbild Nr. :	Datum : 03.04.2020	Pastor-Klein-Str. 17 Fon 0261 / 95269-0 56073 Koblenz Fax 0261 / 9526920 E-mail: info@ivgeo.de

Projekt:	
Bassenheim, NBG "Karmelenbergerweg II"	
	4

Lageplan, Maßstab = 1 : 1000 Anl. 1

n²) Allplan 2018

15.0 cm² 3.2 cm Gestängedurchmesser 30.0 kg 50.0 cm 2 ± verlehmte vulk. Böden quartäre Lehme 4 Terrassenkies

4.37 cm

ZEICHENERKLÄRUNG (siehe DIN 4023)

PROBENENTNAHME UND GRUNDWASSER Proben-Güteklasse nach DIN 4021 Tab.1

Schlagzahlen für 10 cm Eindringtiefe

RAMMSONDIERUNG NACH DIN EN ISO 22476-2:2012

GP gestörte Bodenprobe

w = natürlicher Wassergehalt

fest

KP ⊠ Kernprobe

\$\$ breiig steif \$ weich halbfest

<u>RAMMDIAGRAMM</u>

Rammbärgewicht

<u>SCHICHTUNG</u>

1 Auffüllung

Fallhöhe

<u>KONSISTENZ</u>

Plangrundlagen entnommen aus [U1]

	Bearbeiter : Viehmann Teilbild Nr. : 30	Gezeichnet : Re	immig · vi	
		Datum : 03.04.2020	Pastor-Klein-Str. 17 F	Fon 0261 / 95269-0 Fax 0261 / 9526920
	Projekt: Bassenhe	eim, NBG "Karmel	enbergweg II"	Projekt Nr. : 18-137

Baugrundprofile, Maßstab d. H. = 1:75 Anl. 2

Allplan 2018

Anlage: 3.1 Projekt-Nr.: 18-137

Wassergehalt nach DIN 18121-1

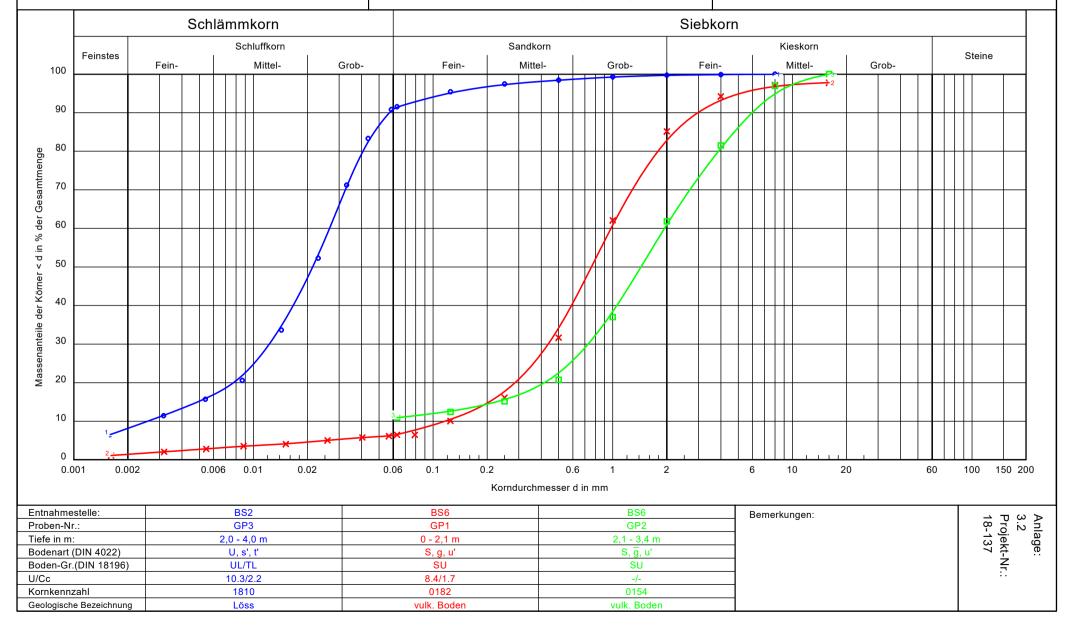
Bassenheim Art der Entnahme: gestört NBG "Karmelenbergerweg II" Probe entnommen am: 27.02.2020

Bearbeiter: Vi Datum: 04.04.2020

Entnahmestelle:	BS2	BS6	BS6	
Probenbezeichnung:	GP3	GP1	GP2	
Feuchte Probe + Behälter [g]:	690,9	1.113,5	835,4	
Trockene Probe + Behälter [g]:	629,7	1.018,5	739,1	
Behälter [g]:	371,8	654,0	545,0	
Porenwasser [g]:	61,2	95,0	96,3	
Trockene Probe [g]:	257,9	364,5	194,1	
Wassergehalt [%]	23,7	26,1	49,6	
Entnahmestelle:				
Probenbezeichnung:				
Feuchte Probe + Behälter [g]:				
Trockene Probe + Behälter [g]:				
Behälter [g]:				
Porenwasser [g]:				
Trockene Probe [g]:				
Wassergehalt [%]				
	•			
Entnahmestelle:				
Probenbezeichnung:				
Feuchte Probe + Behälter [g]:				
Trockene Probe + Behälter [g]:				
Behälter [g]:				
Porenwasser [g]:				
Trockene Probe [g]:				
Wassergehalt [%]				

immig · viehmann Geo- + Umwelttechnik

Körnungslinie nach DIN 18123 Bassenheim


NBG, "Karmelenbergerweg II"

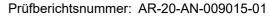
Probe entnommen am: 27.02.2020

Art der Entnahme: gestört

Arbeitsweise: Schlämm- und Siebanalyse

Bearbeiter: Viehmann

Probennahmeprotokoll gem. LAGA PN 98


I Probenkennzeichnung					Projekt-Nr. 18-137						
-				ı, NE	BG "Karmele	melenbergerweg II"					
Stadt/Gemeinde:		VG Weißenthurm			La	Landkreis: Mayen - k			ayen - Koblenz		
Auftraggeber:		Fa	ssbender	Wel	per Ingenieu	re P	a	ırtGmbB			
Datum der Probena	ahme:	27	7.02.2020			Uł	hr	rzeit:	ga	anztägig	
Grund der Probena	hme:	Oı	rientierend	le So	chadstoffunt	ersu	С	hung			
Witterung:		be	wölkt			~	1	0 °C			
anwesende Person	ien:										
Herkunft des Abfall			planter Bo								
vermutete Schadst	offe:	LA	AGA TR B	oder	1						
Form der Lagerung	 :	ke	ine								
Gesamtvolumen:		ur	bekannt								
Lagerungsdauer:		ur	bekannt								
Einflüsse auf den A											
Art der Entnahmes			Schurf	Х	BS			Haufwerk			
Entnahmeart/-gerä	t:		Schaufel		Schappe			Bohrstock			
Art der Probe:			Oberbod				Einzelprobe				
			Unterboo	den		x Mischprobe					
Entnahmedaten:				I							
Probenbezeichn.	BS1/GP	1			1/GP2			BS2/GP1		BS2/GP2	
Anz. Einzelproben	ca. 25			ca. 30			ca. 30			ca. 15	
Entnahmetiefe	0 – 0,5 n	n		0,5 – 2,9 m			0 – 1,8 m			1,8 – 2,0 m	
Entnahmeort	BS1			BS1			BS2			BS2	
Probenmenge	ca. 0,5 k	g		ca. 2 kg			ca. 2 kg			ca. 0,5 kg	
Probenbehälter ²⁾	В			В		В		В		В	
Probenkonserv.											
Probenbezeichn. BS2/GP		3		BS:	3/GP1			BS3/GP2		BS3/GP3	
Anz. Einzelproben ca. 30				ca.	30			ca. 15		ca. 30	
Entnahmetiefe 2,0 – 4,0 r		0 — 1,5 m				1,5 – 1,6 m			1,6 – 4,0 m		
Entnahmeort BS2				BS	BS3			BS3		BS3	
Probenmenge ca. 2 kg				ca.	ca. 2 kg		ca. 0,5 kg		ca. 2 kg		
Probenbehälter ²⁾	В			В				В		В	
Probenkonserv.											

Bauschuttanteil = Anteil an bodenfremden Beimengungen, augenscheinlich geschätzt
 G = Glas, E = Eimer, B = PE-Beutel, HS = Headspace-Gläschen

Probenbezeichn.	bbenbezeichn. BS4/GP2 E			BS5/GP1		BS5/GP2			
Anz. Einzelproben	en ca. 30 ca. 30			ca. 30	Ca	ca. 30			
Entnahmetiefe	0,6 – 2,7 m 2,8 – 4,0 m			0 – 2,2 m	2,	2,2 – 4,0 m			
Entnahmeort	BS4	BS4		BS5	В	S5			
Probenmenge	ca. 2 kg	ca. 1,5 kg		ca. 2 kg	Ca	a. 1,5 kg			
Probenbehälter ²⁾	В	В		В	В				
Probenkonserv.						-			
Probenbezeichn.	BS6/GP1	BS6/GP2		BS6/GP3					
Anz. Einzelproben	ca. 30	ca. 30		ca. 15					
Entnahmetiefe	0 – 2,1 m	2,1 – 3,4 m		3,4 – 4,0 m					
Entnahmeort	BS6	BS6		BS6					
Probenmenge	ca. 2 kg	ca. 1,5 kg		ca. 1 kg					
Probenbehälter ²⁾	В	В		В					
Probenkonserv.									
Probentransport:			Х	Raumtemperatur:		Kühlung bei 4 °C			
Probenaufbewahru	ng bis zur Übergabe a	ın Ingenieurbüro:	х	Raumtemperatur:		Kühlung bei 4 °C			
II Durchführung d	er Probennahme				1				
Name:	Herr Wellen	reuther Firma: (Geo	service Wellenreuthe	r, Ko	oblenz			
Bemerkungen:									
Datum:		l	Jnte	erschrift:					
27.02.2020									
III Übergabe der P	roben an das Ingeni	eurbüro							
Name:	Lagerraum	Büro: i	mm	ig · viehmann Geo- +	Um	welttechnik, Ko			
Datum:	Uhrzeit:	l	Jnte	erschrift:					
28.02.2020									
Probenbeschreib	ung:								
Probenbezeichn.	BS1/GP1	BS1/GP2		BS2/GP1	В	S2/GP2			
Ansprache	verl. vulk. Boden	Löss		vulk. Boden	Н	anglehm			
	U, s*, g	US		S, u´- u	U	, t´, s´			
Farbe	braun	braun		graubraun	dι	ınkelbraun			
Geruch									
Konsistenz	weich-steif	steif			st	eif			
Beimengungen	Beimengungen Wurzelreste								
Bauschuttanteil ¹⁾						-			

Probenbezeichn.	BS2/GP3		BS3/GP1		BS3/GP2	BS3/GP3
Ansprache	Löss		vulk. Boden		Hanglehm	Löss
	U, s', t'		S, u', g'- g		U, t', s'	US, t´
Farbe	braun		graubraun		dunkelbraun	braun
Geruch						
Konsistenz	weich - ste	eif			steif	steif
Beimengungen						
Bauschuttanteil ¹⁾						
Probenbezeichn.	BS4/GP2		BS4/GP3		BS5/GP1	BS5/GP2
Ansprache	vulk. Bode	en	vulk. Boden		vulk. Boden	Lösslehm
	S, u, g´		S, u', g*		S, u, g	U, t, s'
Farbe	graubraun	1	beige, grau		graubraun	braun
Geruch						
Konsistenz						weich
Beimengungen						
Bauschuttanteil ¹⁾						
Probenbezeichn.	BS6/GP1		BS6/GP2		BS6/GP3	
Ansprache	vulk. Bode	en	vulk. Boden		Löss	
	S, u', g		S, u', g* - G, u', s*		U, t, s`	
Farbe	graubraun	l	beige, grau		braun	
Geruch						
Konsistenz					weich	
Beimengungen						
Bauschuttanteil ¹⁾						
IV Durchführung	der Mischp	robenerste	ellung:			•
Probenbezeichnun	g:	MP1		MP2		
Anzahl der Einzelp	roben:	BS1/GP1,	BS2/GP1,	BS1/GP2, BS2/GP2 + 3,		
		BS3/GP1,	BS4/GP2 + 3,	BS3/GP2 + 3, BS5/GP2,		
	BS5/0		S5/GP1, BS6/GP1 + 2		iP3	
Probenmenge		0,7 I	0,7 I			
Probenbehälter ²⁾		G + HS		G + HS		
Probenkonserv.		HS. Metha	inol	HS. Methanol		

Probenaufbewahrun	g bis zur Übergabe an Labor:	Raumtemperatur: x Kühlung bei 4 °					
Name:	Frau Viehmann	Büro:	immig · viehmann Geo- + l	Jm	welttechnik, Ko		
Bemerkungen:							
Datum:			Unterschrift:	1	. /		
02.03.2020			Elu. V.	u	luam		
V Übergabe der Pro	oben an das Labor						
Name:	Paketversand	Labor:	Eurofins, Wesseling				
Datum:	Uhrzeit:		Unterschrift:				
02.03.2020	15:00 Uhr		Paketversand				

Seite 1 von 3

Eurofins Umwelt West GmbH - Vorgebirgsstrasse 20 - D-50389 - Wesseling

Immig Viehmann Geo- und Umwelttechnik Pastor-Klein Str. 17 56073 Koblenz

Titel: Prüfbericht zu Auftrag 02010263

Prüfberichtsnummer: AR-20-AN-009015-01

Auftragsbezeichnung: 18-137 Bessenheim, NBG Karmelenbergerweg

Anzahl Proben: 4

Probenart: Straßenbelag
Probenahmedatum: 27.02.2020
Probenehmer: Auftraggeber

Probeneingangsdatum: 03.03.2020

Prüfzeitraum: **03.03.2020 - 06.03.2020**

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14078-01-00) aufgeführten Umfang.

Leila Djabbari Digital signiert, 06.03.2020

Prüfleiter Leila Djabbari
Tel. +49 2236 897 211 Prüfleitung

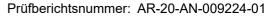
Umwelt

	[Probenbezei	chnung	BS4/KB1 (0-10 cm)	DPM1/KB1 (0-8 cm)	AP1/KB2 (3-15 cm)		
				Probenahme	datum/ -zeit	27.02.2020	27.02.2020	27.02.2020	
				Probennumr		020040834	020040835	020040836	
Parameter	Lab.	Akkr.	Methode	BG	Einheit				
PAK aus der Originalsubstanz									
Naphthalin	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Acenaphthylen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Acenaphthen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Fluoren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Phenanthren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	1,1	
Anthracen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Fluoranthen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	0,7	
Pyren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	1,2	
Benzo[a]anthracen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Chrysen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Benzo[b]fluoranthen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	0,7	
Benzo[k]fluoranthen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Benzo[a]pyren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Indeno[1,2,3-cd]pyren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Dibenzo[a,h]anthracen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	< 0,5	
Benzo[ghi]perylen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	< 0,5	0,6	
Summe 16 EPA-PAK exkl.BG	AN	LG004	DIN ISO 18287: 2006-05		mg/kg OS	(n. b.) 1)	(n. b.) 1)	4,3	

				Probenbezeichnung		AP1/KB3 (15-18 cm)	
				Probenahme	datum/ -zeit	27.02.2020	
				Probennumn	ner	020040837	
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
PAK aus der Originalsubstanz							
Naphthalin	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Acenaphthylen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Acenaphthen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Fluoren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Phenanthren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Anthracen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Fluoranthen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Pyren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Benzo[a]anthracen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Chrysen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Benzo[b]fluoranthen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Benzo[k]fluoranthen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Benzo[a]pyren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Indeno[1,2,3-cd]pyren	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Dibenzo[a,h]anthracen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Benzo[ghi]perylen	AN	LG004	DIN ISO 18287: 2006-05	0,5	mg/kg OS	< 0,5	
Summe 16 EPA-PAK exkl.BG	AN	LG004	DIN ISO 18287: 2006-05		mg/kg OS	(n. b.) 1)	

Erläuterungen

BG - Bestimmungsgrenze


Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von der Eurofins Umwelt West GmbH (Wesseling) analysiert. Die Bestimmung der mit LG004 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

¹⁾ nicht berechenbar, da alle Werte < BG.

Seite 1 von 4

Eurofins Umwelt West GmbH - Vorgebirgsstrasse 20 - D-50389 - Wesseling

Immig Viehmann Geo- und Umwelttechnik Pastor-Klein Str. 17 56073 Koblenz

Titel: Prüfbericht zu Auftrag 02010270

Prüfberichtsnummer: AR-20-AN-009224-01

Auftragsbezeichnung: 18-137 Bessenheim, NBG Karmelenbergerweg

Anzahl Proben: 2

Probenart: Boden
Probenahmedatum: 27.02.2020
Probenehmer: Auftraggeber

Probeneingangsdatum: 03.03.2020

Prüfzeitraum: **03.03.2020 - 09.03.2020**

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14078-01-00) aufgeführten Umfang.

Leila Djabbari Digital signiert, 09.03.2020

Prüfleiter Leila Djabbari
Tel. +49 2236 897 211 Prüfleitung

				Probenbeze	ichnung	MP1	MP2	
				Probenahmedatum/ -zei		27.02.2020	27.02.2020	
				Probennumi	mer	020040863	020040864	
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Probenvorbereitung Feststo	ffe			1				
Probenmenge inkl. Verpackung	AN	LG004	DIN 19747: 2009-07		kg	1,0	1,2	
Fremdstoffe (Art)	AN	LG004	DIN 19747: 2009-07			nein	nein	
Fremdstoffe (Menge)	AN	LG004	DIN 19747: 2009-07		g	0,0	0,0	
Siebrückstand > 10mm	AN	LG004	DIN 19747: 2009-07			ja	nein	
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz				
Trockenmasse	AN	LG004	DIN EN 14346: 2007-03	0,1	Ma%	78,6	81,1	
Anionen aus der Originalsu	bstanz	2		•				
Cyanide, gesamt	AN	LG004	DIN ISO 17380: 2006-05	0,5	mg/kg TS	< 0,5	< 0,5	
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN 1	3657: 2003-0	1#			
Arsen (As)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,8	mg/kg TS	5,9	9,4	
Blei (Pb)	AN	LG004	DIN EN ISO 17294-2: 2005-02	2	mg/kg TS	50	15	
Cadmium (Cd)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,2	mg/kg TS	< 0,2	< 0,2	
Chrom (Cr)	AN	LG004	DIN EN ISO 17294-2: 2005-02	1	mg/kg TS	15	32	
Kupfer (Cu)	AN	LG004	DIN EN ISO 17294-2: 2005-02	1	mg/kg TS	9	17	
Nickel (Ni)	AN	LG004	DIN EN ISO 17294-2: 2005-02	1	mg/kg TS	22	33	
Quecksilber (Hg)	AN	LG004	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	< 0,07	< 0,07	
Thallium (TI)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,2	mg/kg TS	0,2	< 0,2	
Zink (Zn)	AN	LG004	DIN EN ISO 17294-2: 2005-02	1	mg/kg TS	92	55	
Organische Summenparame	eter au	ıs der						
тос	AN	LG004	DIN EN 13137 (S30): 2001-12	0,1	Ma% TS	0,4	< 0,1	
EOX	AN	LG004	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0	< 1,0	
Kohlenwasserstoffe C10-C22	AN	LG004	DIN EN 14039: 2005-01/LAGA KW/04: 2009-12	40	mg/kg TS	< 40	< 40	
Kohlenwasserstoffe C10-C40	AN	LG004	DIN EN 14039: 2005-01/LAGA KW/04: 2009-12	40	mg/kg TS	< 40	< 40	
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origina	alsubstanz				
Benzol	AN	LG004	HLUG HB Bd.7 Teil 4: 2000-08	0,05	mg/kg TS	< 0,05	< 0,05	
Toluol	AN	LG004	HLUG HB Bd.7 Teil 4: 2000-08	0,05	mg/kg TS	< 0,05	< 0,05	
Ethylbenzol	AN	LG004	HLUG HB Bd.7 Teil 4: 2000-08	0,05	mg/kg TS	< 0,05	< 0,05	
m-/-p-Xylol	AN	LG004	HLUG HB Bd.7 Teil 4: 2000-08	0,05	mg/kg TS	< 0,05	< 0,05	
o-Xylol	AN	LG004	HLUG HB Bd.7 Teil 4: 2000-08	0,05	mg/kg TS	< 0,05	< 0,05	
Summe BTEX	AN	LG004	HLUG HB Bd.7 Teil 4: 2000-08		mg/kg TS	(n. b.) 1)	(n. b.) 1)	

				Probenbezeichnung Probenahmedatum/ -zeit		MP1	MP2
						27.02.2020	27.02.2020
				Probennum	Probennummer		020040864
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
LHKW aus der Originalsubs	tanz						
Dichlormethan	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
trans-1,2-Dichlorethen	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
cis-1,2-Dichlorethen	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
Chloroform (Trichlormethan)	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
1,1,1-Trichlorethan	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
Tetrachlormethan	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
Trichlorethen	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
Tetrachlorethen	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
1,1-Dichlorethen	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
1,2-Dichlorethan	AN	LG004	DIN ISO 22155: 2006-07	0,05	mg/kg TS	< 0,05	< 0,05
Summe LHKW (10	AN	LG004	DIN ISO 22155: 2006-07		mg/kg TS	(n. b.) 1)	(n. b.) ¹⁾
Parameter)					3 3	,	,
PAK aus der Originalsubsta	1	1	I	T a ==			
Naphthalin	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Acenaphthylen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Acenaphthen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Fluoren	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Phenanthren	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Anthracen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Fluoranthen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Pyren	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[a]anthracen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Chrysen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[b]fluoranthen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[k]fluoranthen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[a]pyren	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Indeno[1,2,3-cd]pyren	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Dibenzo[a,h]anthracen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[ghi]perylen	AN	LG004	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Summe 16 EPA-PAK exkl.BG	AN	LG004	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾
Summe 15 PAK ohne Naphthalin exkl.BG	AN	LG004	DIN ISO 18287: 2006-05		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾
PCB aus der Originalsubstanz							
PCB 28	AN	LG004	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 52	AN	LG004	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 101	AN	LG004	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 153	AN	LG004	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 138	AN	LG004	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
PCB 180	AN	LG004	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
Summe 6 DIN-PCB exkl. BG	AN	LG004	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)	(n. b.) 1)
PCB 118	AN	LG004	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01	< 0,01
Summe PCB (7)	AN	LG004	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)	(n. b.) 1)

				Probenbezei	chnung	MP1	MP2
				Probenahme	datum/ -zeit	27.02.2020	27.02.2020
				Probennum	ner	020040863	020040864
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
Physchem. Kenngrößen	aus den	າ 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01		
pH-Wert	AN	LG004	DIN 38404-C5: 2009-07			7,6	8,7
Temperatur pH-Wert	AN	LG004	DIN 38404-4 (C4): 1976-12		°C	19,1	20,8
Leitfähigkeit bei 25°C	AN	LG004	DIN EN 27888 (C8): 1993-11	5	μS/cm	95	95
Anionen aus dem 10:1-Sc	hüttelelu	iat nac	h DIN EN 12457-4:	2003-01			
Chlorid (CI)	AN	LG004	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	2,4	4,7
Sulfat (SO4)	AN	LG004	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	1,3	1,3
Cyanide, gesamt	AN	LG004	DIN EN ISO 14403: 2002-07	0,005	mg/l	< 0,005	< 0,005
Elemente aus dem 10:1-S	chüttelel	uat na	ich DIN EN 12457-4	2003-01			
Arsen (As)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,001	mg/l	0,002	0,004
Blei (Pb)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,001	mg/l	< 0,001	< 0,001
Cadmium (Cd)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,0003	mg/l	< 0,0003	< 0,0003
Chrom (Cr)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,001	mg/l	< 0,001	< 0,001
Kupfer (Cu)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,005	mg/l	< 0,005	< 0,005
Nickel (Ni)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,001	mg/l	< 0,001	< 0,001
Quecksilber (Hg)	AN	LG004	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002	< 0,0002
Thallium (TI)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,0002	mg/l	< 0,0002	< 0,0002
Zink (Zn)	AN	LG004	DIN EN ISO 17294-2: 2005-02	0,01	mg/l	< 0,01	< 0,01
Org. Summenparameter aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01							
Phenolindex, wasserdampfflüchtig	AN	LG004	DIN EN ISO 14402 (H37): 1999-12	0,010	mg/l	< 0,010	< 0,010

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von der Eurofins Umwelt West GmbH (Wesseling) analysiert. Die Bestimmung der mit LG004 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

[#] Aufschluss mittels temperaturregulierendem Graphitblock

¹⁾ nicht berechenbar, da alle Werte < BG.

immig · viehmann Geo- + Umwelttechnik

immig · viehmann
Geo- + Umwelttechnik

Pastor-Klein-Straße 17

56073 Koblenz

Tel. 0261 / 9 52 69-0 Fax 0261 / 9 52 69-20

Absinkversuch

Auswertung nach USBR-Formel

Projekt Nr.: 18-137 Projekt: Bassenheim, NBG "Karmelenbergweg II"

Bearbeiter: Viehmann Datum: 27.02.2020

Bohrung Nr.: BS6 Versuch Nr.: 1 Anlage: 6

Oberkante Verrohrung: 0,00 m ü. GOK Geländeoberkante: 190,97 m NN Grundwasserspiegel vor Versuch: 3,4 m u. GOK Unterkante Verrohrung: 1,0 m u. GOK Bohrlochtiefe: 4,0 m u. GOK

Rohrdurchmesser außen: 55 mm Rohrdurchmesser innen: 54 mm

	Wasserspiegel		Durchlässigkeits-
Zeitdifferenz	unter OK	Absenkung	beiwert
Δt	Verrohrung	Δh	K
[s]	[m]	[m]	[m/s]
0	0,00		
15	0,15	0,15	1,71E-06
30	0,29	0,29	1,69E-06
45	0,39	0,39	1,54E-06
60	0,49	0,49	1,48E-06
90	0,61	0,61	1,25E-06
120	0,80	0,80	1,27E-06
180	1,09	1,09	1,21E-06
300	1,58	1,58	1,15E-06
600	2,02	2,02	8,03E-07
900	2,69	2,69	8,29E-07
1800	3,09	3,09	5,28E-07
2700	3,38	3,38	4,17E-07
3600	3,48	3,48	3,32E-07
6300	3,52	3,52	1,94E-07
14400	3,58	3,58	8,80E-08